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ABSTRACT. If a prime p is decomposed as x2 + 4y2, the power 2m I lY can be 
determined by an algorithm of polynomial efficiency based on use of singular 
moduli from the modular equation of order 2. The properties of the modular 
functions required in this algorithm are simple branching and parametrization 
properties, which in turn define the modular functions and equations (essen- 
tially uniquely). The well-known equations of "Klein's Icosahedron" and their 
Hecke analogues come into play here, and to some extent they can be uniquely 
characterized in this fashion. The extraneous cases which arise are in some 
sense interesting analogues of modular equations. 

1. THE POWER CONDUCTOR ALGORITHM 

The motivating problem for this work comes out of a type of algorithm [2] 
of ring class field theory. 

A prime p _ 1 mod 4 admits a (unique) representation in Z as a sum of 
squares. We shall consider only the additional power of 2 dividing the even 
square, namely the m for which 

(I.la) p = X2 + 4y2 2mIly. 

The (polynomial-time) algorithm for m generates a sequence {ao, a, 
am 1-} of length m as follows: 

(1. lb) aO = 9/8, rk ak, 
ak+I (rk +3)2/[8(rk + 1)] modp. 

The last k for which (akip) = 1 (or for which rk is definable) defines the 
length of the sequence as m = k + 1. (Incidentally, the method is independent 
of the choice of the sign of the square root in rk .) This is illustrated below for 
89= 52+4.42 (where m=2): 
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['412w a - 10 { 302=a2 27, 

(l.lc) a0 - 79 (- 30)2 a2 31, 

_(41)2 = aI - 50 - 3 a 
I (-36)2 Xa2 60. 

These are congruences modulo 89, and of course 27, 31, 77, and 60 are all 
nonresidues. 

This algorithm is explainable in terms of modular functions if we write 

(1.2a) p = X2 + 4(2m y)2 

and note the condition for solvability is that p split completely when factored 
in the ring class field 

(1.2b) Km = Q(i, j(2m+ i)). 

(The discriminant is -16 * 4m and the "extra factor" 2m is the conductor, 
hence the name of the algorithm.) 

Here, j(z) is the Klein (or Weber) modular function (see ?3 below). We need 
the sequence (of singular moduli) j(2i), j(4i), j(8i), ..., which we soon see 
involves a succession of quadratic field adjunctions. These fields are hopeless to 
write explicitly, but only the quadratic character modulo p is required in the 
algorithm. 

The natural question arises on whether the use of transcendentals should be 
eliminated in the interests of number theoretic "purity". This action seems to 
be unfeasible at present, but the transcendental level might also be warranted by 
the fact that (as we show) the branching process of ( 1. lb) essentially determines 
both the modular equation (between j(z) and j(2z)) and the modular function 
itself. The determination is almost unique, with the Hecke modular function 
appearing as an "extraneous" solution. 

It is a classical exercise to interpret modular relations (including modular 
equations) as functional equations which generate coefficients of power series 
(and identities, congruence relations, etc., see Lehmer [7]). This idea was used 
again by Mahler [8] to generalize the relations and thereby extend the concept 
of modular functions. More recently, similar devices were used by Conway, 
McKay, Norton, and others (see [4, 1]) to study group representations. The 
present paper will be more restrictive, limited to properties deduced primarily 
from the theory of compact Riemann surfaces and not from local series (at 
j= oo). 

2. ROLE OF THE BRANCHING PROCESS 

The relation between 1(z) = z and j(2z) = w is the symmetric modular 
equation of order 2, 

(2. 1 a) z3 + w3 _ z2w2 + 243 . 31(Z2W + W2Z) -243553(Z2 + W2 

(2.la) 34534027zw + 283756(z + w) - 2123959 = 0. 

This seems paradoxical since the operation z -* 2z is not symmetric, but the 
matter can be explained (see [3]) by the fact that there are three roots for w, 
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given z, so 

(2.1b) Z = j(T) > w = {j(2T), j(z/2), j((z + 1)/2)}. 

In the sense of analytic continuation, these roots are indistinguishable, so that 
the modular equation can be considered as a method of generating j(z/2m) as 
well as j(2mz) from j(z) . 

The process of finding w from z can be designated as part of an iterated 
chain 

j(z/2), 

(2.1c) j(2) j) j((z + 1)/2), 

(where the missing term "* **" is j((2z + 1)/2) ). 
We now see that the algorithm duplicates the pattern of the branching 

j (/2) j-* 
4) 

(2.1d) j(z) | j((z + 2)/4), 

{1((zr+ 3)/4). 
We shall find it notationally more convenient to iterate the sequence 

(2. le) i (T) -* j(T/2) -* j(T/4) .-* 

To complete the connection with the algorithm, note that (2.1 a) is parame- 
trized [5] by 

(2.2a) z = 64(t + 4)3/t2, 

(2.2b) w = 64(u + 4)3/u2, 

(2.2c) u = 1/t. 

Now to go from z = j(z) to w = j(z/2), we would clearly solve (2.2a) for 
three values of t and use (2.2c) to find three values of u, one of which makes 
(2.2b) produce w = j(z/2) (compare (2.lb)). 

If, however, we attempted to go to j(z/4) by repeating the steps (mechani- 
cally), we would have difficulty since (2.2c) returns us to the original t and to 
j(z), not j(z/4) . The method is to avoid reversible steps by taking s (instead 
of t ), one of the two other conjugates of t in the solution of (2.2a), and by 
setting u = 1/s in (2.2c) (rather than u = 1/t). Thus, the other root s (:# t) 
is found from the quadratic 

(2.3a) ~ (+4)3) =s - t S - t2 

(2.3b) s 2t2 - 48st - 64(s +t) = 0, 

(2.3c) s = 8(3t+4?(t+4)t)t2. 

We introduce C as a second uniformizing parameter and find 

(2.4a) C2 = t+ I 
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(2.4b) s = 8(1 + C)I(l - C)2, 

(2.4c) 1/s -* t, t + 1 -+ (C + 3)2/[8(1 + C)J. 
If we refer to (1. lb), ak iS t+ 1 in (2.4a) and ak+1 is t+ 1 in (2.4b). The initial 
value is set by the fact that j(2i) = j(i/2) = 663 (the value of z in (2.2a)). 
For this z, we have t = 1/8 and aO = 9/8. This verifies the algorithm. 

Our ultimate goal is to use the properties of the algorithm to derive both the 
modular equation and j(T) . 

3. BRANCHING PATTERNS OF MODULAR EQUATIONS 

We shall consider the usual modular function j(z) (see [10]) as one of three 
related functions jM(T) (for which M = 1). The others are those of Hecke 
(see [9]). 

For the index M = 1, 2, or 3, we define the modular group 

(3.1a) GM = (T -* -1/T, T T -*+ M), 

which defines a discrete group on the upper half plane 

(3. 1b) H: :a(T) > 0. 

Its fundamental domain is given (with boundary identifications under (3. la)) 
by 

(3. 1c) Ii(T) I< vXM/2, ITn > 1, 

with fixed points of order 2 at z = i and of order B = 7r/ arccos(V"M/2) 
at the (2B)th roots of unity: 

iw+ i4- (3.ld) PM = 2 

The fundamental domain is uniformized by the holomorphic modular func- 
tion 

(3.2a) jM(T) = ll/q + co + c1q + c2q + c3q3 +*, 

(3.2b) q = exp 27riTz/iv' , 

SO jM = Oc (and q = 0) exactly when a(q) = oo. The choice of IM is fixed 
by conditions on two additional points 

(3.2c) iM(PM) = 0, j M(i) = HM. 

Some values which will be useful for identification later on are in the table below 
(compare [9]): 

M HM Co C1 C2 C3 

(3.2d) 1 1728 744 196884 21493760 86429970 
(3.2d) 2 256 104 4372 96256 1240002 

3 108 42 783 8672 65367 

As a matter of convenience, we shall also refer to il (T) by the more usual j(T) . 

Our general objective shall be to examine branching properties of the modular 
equations 

(3.2e) 'DMN(jM(T), jM(NT)) = 0 



HOW BRANCHING PROPERTIES DETERMINE MODULAR EQUATIONS 159 

for M = 1, 2, 3 and N = 2, 3, 4, 5. Then we ask to what extent the modular 
equations and functions are unique consequences of the branching properties. 

We now define the branching patterns of modular equations of order N for 
jM(,C). The function jM(N-) satisfies a modular equation of degree k over 
C(jM(z)) as one of k conjugates 

(3.3a) {MN) M()Sj 

(Possibly, k > N + 1, see (3.4a) below.) If we denote 

(3.3b) z = IM(T), W = jM(NT), 

we find the various branches of w over z by analytic continuation are those 
given in the set (3.3a), so that at oc there is a pattern given by the types 
(3.3c) w e zuw0 

for co a root of unity. For example, from just the N + 1 items specified in 
(3.3a), 
(3.3d) w zN, z wN 

are always valid relations for the branches at ocx. If these are the only relations 
(i.e., k = N + 1 ), call the branching pattern simple. (Note that the symbol 
A e B is used in the strict meaning A/B -*1 .) 

The branching patterns are shown in Tables I-V (at the end of the paper). 
To illustrate with a nonsimple pattern (k > N + 1), for example, take 114 in 
Table III. Here we have the branches 

z = i(), 

(3.4a) ~w =j(4,r), j (-) j l ) l (3.4a)444 

j(z+3) }(2z+1) 

The first value of w leads to w z4, the next four values represent roots 
w eZ1/4, best written as z w4. The last value of w in (3.4a) comes out 
to be w e -z (since for z - + 1/2, q -q). In summary, for c14, the 
branching at oc has the pattern 

(3.4b) w eZ4, z W4, Z -W. 

4. UNIQUENESS RESULTS FROM PARAMETRIZATION RESTRICTIONS 

We start with modular equations of order N and degree k, but of genus 
zero, 

(4. 1a) z = jM(T), w = jM(NT), (DMN(Z, W) = 0. 

This equation is parametrized by equations of degree k, 

(4. lb) z = f(t), w = g(t). 
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Definition. Call an irreducible equation in z and w strongly uniformly parame- 
trized when it has genus zero and, for the representation of either z or w (say 
w ) the factors (in C) of 

(4. lc) g(s) - g(t) = 0 

are curves of genus zero. (There is more than one factor, since s - t is trivially 
a factor.) Call the equation weakly uniformly parametrized if there is at least 
one nontrivial factor (not s - t ) in (4.1 c) which is of genus zero. (Here "weak" 
includes "strong".) 

We used strong uniformity in the algorithm of ? 1 to represent the branching 
(see (2.4a, b)) where s is a two-valued function of t. For purposes of the 
algorithm, it would have been sufficient to have weak uniformity (see ?9 below). 

Main Problem. Given a branching pattern generated by a weakly uniform mod- 
ular equation, does this pattern determine the modular equation uniquely (to 
within an additive constant on the modular functions)? 

Uniqueness results. For the simple branching pattern w z2 z W2 
corresponding to the modular equations 

(4.2a) 412(j(2z), j(z)) = 0 and cF32(j3(2z), j3(T)) = 0 

there is essentially a unique common strongly uniform equation with a param- 
eter yielding these two cases (see Table I). For the simple branching pattern 
w w3, z d w3 corresponding to the modular equations 

(4.2b) cI?3(j(3R), i(T)) = 0 and 023(W2(3R), 2(T)) = 0, 

there are essentially two strongly uniform equations, one for each equation (see 
Table II). In all these cases, the result would be the same if we replaced "strongly 
uniform" by "weakly uniform". 

Other results on modular equations of genus zero. These equations are strongly 
uniform (see Tables III and V): 

(4.3a) 022(j2(2T), j2()) = 0, CF14(j(4z), j(T)) = 0, 
(D 1 5(j(5r) , ji(T)) = ?. 

These equations are (only) weakly uniform (see Table IV): 

(D33(j3(3), j3(z)) = 0, (D34(j3(4z), j3()) = 0, 
(4.3b) F24(j2(4z), j2(T)) = 0. 

Finally, the character of this case is unknown at present (see Table V): 

(4.3c) CF25(j2(5z), 2(T)) = 0. 

(Indeed no claim of uniqueness for a given branching pattern is made in any of 
the cases (4.3a-c).) 

For the simple branching cases (D15 and 025 the modular equations of Table 
V are shown embedded in a one-parametric family of equations with the same 
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branching, but (again) it is not known whether or not the families are unique. 
(The "missing" case P135 is of genus one.) 

5. PRELIMINARY CONSIDERATIONS 

We know two facts ahead of time concerning the modular relations of (3.2e) 

(5.1) (DMN(Z, w) = 0 for z = jM(T), W = iM(NT). 

First of all, the relation must be symmetric, since for given z, the k (> N + 1) 
conjugates w include not only jM(NT) but also jM(T/N) (as seen in the listings 
of Tables I-V). Furthermore, the poles of z must occur only where there are 
poles of w . 

Simplifying Lemma. In the cases where (DMN(Z, W) is ofgenus zero, on the basis 
of branching patterns alone, we can restrict the parametrization of the relation 
(5.1) to 

(5.2) z = R(t) (=A(t)/B(t)), w = R(u), tu = 1, 

(with polynomials A(t) and B(t)) as follows: 
1. The degree of A(t) is k (> N + 1), while the degree of B(t) is k - 1, so 

the poles of z consist at least of t = oo (simple pole) and t = 0 (zero of order 
N for B(t) with A(0) :0 O). 

2. Furthermore, when k > N + 1, there is another set of k - N - 1 poles t 
(namely the roots of B(t)/tN) invariant under t -* 1 /t. 

For a proof, start with a parametrization z = R(t) and w = S(t), for which 
(by linear change of parameter) t = oo produces w zN and t = 0 produces 
z I wN. Then the symmetry validates z = S(u) and w = R(u). Thus, we 
have a one-to-one mapping of the t-sphere onto the u-sphere which is linear 
and indeed involutory in such a manner as to interchange 0 and oo. The 
involution must be tu = constant, reducible to tu = 1 by a scaling of t and 
u. The rest follows from the branching pattern. 

6. THE TRUE MODULAR EQUATIONS AND "PSEUDOMODULAR EQUATIONS" 

In each one of the cases of (3.2e) except M = 3, N = 5 the modular 
equation is of genus zero. This equation can be derived from the branching 
information, augmented by the knowledge of the fixed points of (3.2c). The 
classic cases were worked out for j(z) by Klein and Fricke (see [51 and [3]) 
and the analogues for Hecke's jM(T) are routinely similar. (The single most 
powerful tool is the fact that JM(T) and jM(T)- HM have known multiple roots 
corresponding to the fixed points.) 

In those cases of simple branching (poles only at t = 0 and t = oo ) any 
parametrization retains its branching pattern (adjusting for constant factors on 
z and w ) under 

(6.1) t -* t/g, u -* ug. 

Essentially, R(t) has just acquired an essential parameter g. Now the trans- 
formation (6.1), of course, cannot affect the parametrizability restrictions of j4 
(above). Therefore there is an infinite set of of solutions to the parametrization 
as a functional equation formed by eliminating t in the following: 

(6.2a) z = R(t) = l/q+co+clq+ C2q2 + c3q + _ 
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(6.2b) w = R(1/t) = l/qN + co + clqN + C2q2N + c3q3N +* * - 

with q = 0 (i.e., a(z) = oc) at t = ocx. (A suitable change of variables from 
t = oo to T = 0 simplifies the manipulation of the power series, see Tables I, 
II, and V.) The coefficients co, cl, c2, and C3 are listed to help identify the 
functions. 

Thus, with the usual notation q = exp 27iz/V/M7, we then obtain a solu- 
tion of the parametrization equation, say z = j*(z), with the property that 
w = j*(Nz) is one branch of w . Of course, the other branches will be some- 
what amorphous in general, although for certain values of g which belong to 
a modular equation, other branches will be identifiable in familiar fashion as 
j* (T/N), etc. These are in a sense "pseudomodular" functions parametrized by 
g. 

The most remarkable case is for N = 2 (Table I), where two values g = 4 
and 2 link j(T) and j3(T) to the same parametrization. 

Naturally, in the cases of nonsimple branching ( k > N + 1 ), the scaling (6. 1) 
will be invalid except for trivial cases (like g = -1 ), since it violates condition 
2 of the lemma in ?5. In these cases, the functional equations (like (6.2a, b)) 
would lead only to the true modular functions, so no further attention was given 
to the power series (see Tables III and IV). 

7. UNIQUENESS PROOFS 

We have only to verify that the cases in Tables I and II are unique for the 
(simple) branching patterns under the additional requirement of weakly uniform 
parametrization. In other words, for w e zN and z e wN, Table I (for 
N = 2 ) and Table II (for N = 3 ) show the only parametric equations for which 
w (t) - w (s) has at least one nontrivial factor which is a curve of genus zero. 
(It will happen that all factors are of genus zero, leading to strongly uniform 
parametrization.) It is understood, as before, that "uniqueness" holds only to 
within a common additive constant for both z and w. So we can make an 
a priori assumption that z and w have at least one multiple factor by choice 
of this constant. Also, we can ignore any multiplicative constant on z or w 
since they are not essential to the parametrization. Finally, we shall work with 
w since the lower power of t in the denominator is advantageous. The details 
are plethoric, so "obvious" trivial cases shall be ignored, as many other details. 

Uniqueness for N = 2. We start with 

(7.1a) w(t) = (t + 1)2(t + a)/t. 

This is, by linear transformations, 

(7. 
l 
b) t i-* .t + ,u, w __*pw + a 

the most general form of w for the simple branching pattern. The only values 
of a for which w (s) - w (t) has a nontrivial factor of genus zero are a = 1 
and a = -8. These are recognized as belonging to the parametric relation in 
Table I. 

We verify that 

(7.1c) (w(s) - w(t))st/(s - t) = ts(s + t) + (a + 2)ts - a. 
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Solving this quadratic for s, we obtain the fourth-degree discriminant 

(7.1d) D(t) = (t2 + (a + 2)t)2 + 4at, 

which now must have a double root. The condition on its cubic factor is 

(7.1e) (a+ 2)3 = 27a, 

which produces the roots a = 1, -8. We can easily recognize the polynomials 
in (7.la), 

(7.1f) w(t) - (t + 1)3/t, (t + 1)2(t - 8)/t 

in the common parametric forms for 112 and 132 in Table I. 

Uniqueness for N = 3. We start with 

(7.2a) w(t) = (t + 1)2(t + b)(t + c)/t. 

This is again, by linear transformations, 

(7.2b) t -iAt + , W-* pW + , 

the most general form of w for the simple branching pattern. The only values 
of (b, c) for which w(s) - w(t) has a nontrivial factor of genus zero are four 
root pairs 

(7.2c) (b, c) = (1, 9), (a, a), where = (3 - 2v)/(3 + 2v), 

(7.2d) (b, c) = (1, 1), (-7+2 -8-7-2 -8). 

These are seen as producing (respectively) the polynomials 

(7.3a) w(t) = (t + 1)3(t + 9)/t, (t2 + 6t - 3)2/t 

seen to be present in 013 (in Table II) and the polynomials 

(7.3b) w(t) = (t + 1)4/t, (t + 1)2(t2 - 14t + 81)/t 

seen to be present in 023 (in Table II). 

The verification is lengthier, since with the two unknowns b and c in (7.2a) 
we must invoke the method of "multiple roots" twice. To start, 

(7.4a) (w(s) - w(t))st/(s - t) = st(s2 + St + t2) + st(s + t)C + stB - A, 

where A, B, C are the coefficients of (t + 1)2(t + b)(t + c), namely 

(7.4b) A = bc, B = 1+bc+2b+2c, C = 2+b+c. 

If we let S = s + t, P = st, then (7.4a) becomes 

(7.4c) PS2 - p2 + PSC + PB - A = 0. 

This determines a subfield C(P, S), which has to be of genus zero since the 
same is expected of C(s, t). We rewrite (7.4c) as 

(7.4d) P(S+ C/2)2 = p2 - PE + A (E = B - C2/4). 

Then the genus zero requirement becomes E2 = 4A, or, from (7.4b), 

(7.4e) (b + c - (b - c)2/4)2 = bc. 
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If we substitute b = ,82 and c = y2, this leads to 

(7.4f) +fl +y = 0 or 2. 

By symmetry, we reduce to two cases, 

(7.4g) fl = y or fl = y + 2. 

We now look for the second condition on b and c. We go from C(S, P) 
to C(s, t) by using the pefect square in (7.4d). We see 

(7.5a) ( st - E/ 2 - St. 

Now C(s, t) = C(s, x) if x2s = t with 

(7.5b) x= st - E/2 
St ? S2 +0Cs2' 

Then the new equation in s, 

(7.5c) s2(X2 - 
_ X3) - xCs/2 - E/2 = 0, 

leads to a discriminant 

(7.5d) D = (Cx/2)2 + 2E(x2 -x - X3) 

with a double root when 

(7.5e) C2/4 + 2E = ?4E. 

The plus sign leads us to (1)13 . If it is combined with /3 = y, we obtain the 
first root pair of (7.2c), and with fi = y + 2 the second root pair. Likewise, the 
minus sign leads us to (1)23. If it is combined with fi = y, we obtain the first 
root pair of (7.2d), and with fi = y + 2 the second root pair. This accounts for 
all weakly (and strongly) uniform parametrizations. 

8. THE PARAMETERS 

Finally, let us examine the parameters. The parameters have a historical 
significance since they played a role in Klein's "Icosahedron" as the sphere un- 
dergoing the finite rotation groups [6]. Indeed, there it is shown in effect (see 
also [3]) that for the case ()1N, the sphere is actually the c-sphere, where 

(8.1a) t = t(CN), s = s(C) for N = 2, 3, 4, 

(8.1b) t = t(g5 - -5), s = s(C) for N = 5. 

Contrary to appearances, the relation in (8. ib) yields five values of s (not ten) 
for each t since s(C) = s(- 1/ ) (see [2]). 

Table I: The case 012 was handled in (2.4a, b) (and 032 is similar since it 
is connected by the parameter g ). 

Table II: The case 013 follows by setting (b, c) = (1, 9) and uniformizing 
the discriminant in (7.5d) by x = 43/3. Then (7.5c) yields s while (7.5a) 
yields t for 0)13 as follows: 

(8.2a) 1 + 9/s = (I_- )3, 1 + 9/t = (1 - 3/4)3. 
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So C is in effect (1 - 3/4). More important, s -* t under the linear fractional 
transformation 

(8.2b) I - 3/4 1- - I/4 

The case 123 is novel since it involves a nonabelian parameter. As before, we 
set (b, c) = (1, 1) and uniformize the discriminant in (7.5d) by x = -42 
Then (7.5c) yields s while (7.5a) yields t as follows: 

(8.3a) 1/ IS + ,2 + ,3 I/t = I/ + 1/ 2 + 1 g3 

(8.3b) [s -*t] - [ l/ 

Table III: With the parameters shown in each case, 

(8.4a) 122: [S -1 -- C, 

(8.4b) ()14: [S t] - [* (C - 1)/( + 1)]. 
Finally, we can see that in the Hecke cases 032, 023, and 022 an iterative 

algorithm exists which is algebraically analogous to that which was used in the 
Klein cases ( N = 1) as an illustration of class field theory. 

9. THE MODULAR EQUATION OF KLEIN AND HECKE 

The modular equation of Table I with parameter g is remarkable since it 
embraces both Klein's j(r) and Hecke's j3(T) . We start with the simultaneous 
equations of Table I (in the variable T), namely 

(9.1) zT = (1+g4T)3 and wT2 = (?+g2T)3 

If we eliminate T, we obtain (ignoring a constant factor) 

0 = 9g8 + 36gl? - 84g12 + g6 + 84g18 - g24 

+ 9g22 + 126g14 - 126g16 - 36g20 
+ (3g16 + 45g8 + 3g4 + 45g12 - 60g10 - 18g6 - 18g14)z 

(9.2) + (3g16 + 45g8 + 3g4 + 45g12 - 60g10 - 18g6 - 18gl4)w 

+ (_gg4 + 3g2 + 9g6 - 3g8)z2 

+ (-36g8 _ 1 + 35g6 _ 9g4 + 9glo + 2gl2)wz 
-w 2z2 + z3+ w3 + (_gg4 + 3g2 + 9g6 - 3g8)w2 

+ (-3g2 + 6g4)wz2 + (-3g2 + 6g4)w2z. 

If we substitute g = 4 (for Klein), we get the familiar equation (2.1a) for 
Z = j(r) and w = j(2r): 

0 = 8748000000z + 8748000000w - 162000z2 

(9.3a) + 40773375wz - w2z2 + z3 + w3 - 162000W2 

+ 1488wz2 + 1488w2z - 157464000000000; 

and if we substitute g = 2 (for Hecke), we get the less familiar equation for 
z = j3(r) andW =j3(2r): 

0 = 34992z + 34992w - 324z2 + 10287wz - w 2z2 
(9.3b) 

+ Z3+ w3 - 324W2 - 1259712 + 84wz2 + 84w2z. 
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TABLE I. Derivation of the modular functions j(r) and j3(r) 
from the unique strongly uniform modular equation expressing 
the branching pattern w 1 z2, z 2 w2 

D12: Z = 1(T), w = j(2T), , j (- 1) 

D32: Z = j3(T), W = j3(2T), j3 (2) j3 (z2 ) 

The modular equations belong to the unique family 

z(t) = 3(g + t)3 27g4 + g3(t - 2g)2(4t + g) 

t2 4 4t2 
I ( t =w 3(l + tg)3 27g4 g3(2gt - 1)2(tg + 4) 

z (1 
= 

wL() (+g)-274+ 4 

For the power series expansion set t = 1/(Tg3) ( T -O 0), 

Z = (1 + g4T)3/T = 1/T+3 g4 + 3g8T +g12T2 

= l/q+co+clq+c2q2 +c3q3 + 

w = (1 + g2T)3/T2 = 1/T2+3 g2/T + 3g4 + g6T 

= 1/q2 + Co + cl+q2 + c2q + c3q +6 

Comparing the power series, we find 

co=g4 -3 2 cl=_ 9 
94 -3 2 

C 
12 +9 910 

1 6 
c0 g4-2g2, c-3g8+98g g 4 , c2=g 2+9g -g 
C3 = 3g14 + 2712 + 9 10 + L15 g8 + 27g6 + 9 g4 - 3 2 

c3-g~~8g +4g 1285P326 ?3g - 
For g = 4 we have j(T) and for g = 2 we have j3(T) . 

TABLE II. Derivation of the modular functions j(r) and j2(T) 
from two uniquely determined strongly uniform modular equa- 
tions expressing the branching pattern w z 3 Z w 3 

D13: z = j(T), w = j(3T), j 3 3 3 

The modular equation belongs to the unique family 

g2(3t + g)(t + 3g)3 3 3g2(t2 - 6gt - 3g2)2 
z (t) = 

=64g ? 

z = w (t) =g2(gt + 3)(3gt + 1 )3 64g3 ? 3g2(3g2t2 + 6gt - 1)2 
t ~~~~~~t t 

For the power series expansion, set t = 1/(3g2T) ( T - 0), 

z = (1 + g3 T)(1 + 9g3 T)3/T 

= 1/T + 28g3 + 270g6 T + 972g9 T2 + 729g '2T3 

= 1/q +co +clq +C2q2 +c3q3 + , 

w = (1 + 9gT)(1 + gT)3/T3 = 1/T3 + 12g/T2 + 30g2/T + 28g3 + 9g4T 

= 1/q3 + co + clq3 + c2q + c3q 9 + 

Comparing the power series, we find 

co = -4g + 28g3, cl 6g2+ 270g6, 

C2 = 972g9 + 1?080g7 - 8 g3 _ _4g 

C3 = 729g12 + 7776glo + 2700g8 - 3g4. 

For g = 3 we have j(T) . 
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D23 Z = j2(T), W = j2(3T), 12 (3), 12 ( 3 ), 12 (?2 ) 

The modular equation belongs to the unique family 

z(t) 92(t + g)4 256g3 +g2(t - 3g)2(27t2 + 14gt + 3g2) 
z(3 

= 27 ?27t3 

z = 
(t) g2(gt + 1 )4 256g3 + g2(3gt - 1)2(3g2t2 + 14gt + 27) 

tj I 27 271 

For the power series expansion, set t - 1/(g2T) ( T -O 0), 

z = (1 + g3T)4/T = 1/T+4g3 +?6g6T + 4g9T2 + g12T3 

= l/q+co+clq +?c2q2 +c3q3 + ? , 

w = (1+ gT)4/T3 = 1/T3+ 4g/T2 + 6g2/T+4g3 + g4T 

= l/q3 +co +clq3 +c2qA +c3qA + 

Comparing the power series, we find 

co= 4g3-g9 cl = 6g6 22 

C2 4g9 +?8g7 + 88g3 4g 

C3 =g12 + 32g 0? + 12g8 - g4. 

For g = 3 we have j2(T) . 

TABLE III. Other cases where the modular equation is strongly 

uniform 

Branching pattern: w z2, z w2, z -w. 

D22: Z = j2(T) w = j2(2T) 12 () i2( 2) 12 (T + 2) 

The corresponding modular equation is 

z(t) = 16(t + 2)4 16(t2 4t 4)2 z( 
t 2(t ?1) 

25 
t 2(1 +1) 

z (-) = w(t) - (21?l)) - 256 + (4?4i)) t t~~~(1?+1) 1(1 +1) 
To prove strong uniformity, factor 

w (t) - w (s) -16(t+1 +s)(t-s)(16t2s2?+ 16t2s 16ts2+ 16ts- 1) 
wt(t l)s(s + 1) 

The quadratic root shows genus zero: With t = 42/(1 - C2) 

-2t2 - 2t + (2t + I) "t+t (I + C)2 
s =4t2 + 4t 4C 

Branching pattern: w z4, z w4, w 

? it. ) j(4 ) j ~( T ) (r 
? I ) T + 2 ) (2T + I 

(D4:Z = j(T) , W j(4T) , j(T) 4( 
l 

4(?2 (2T ) 

The corresponding modular equation is 

z(t) = 116(t2 + 16t + 16)3 1728 + 16(t + 2)2(t2 - 32t - 32)2)2 z(1) 1~~t(t ?l) 12+t4(t ?l) 

(I)= ut)= 16(16t2 +_16t_+_1)3_= 16(2t + 1)2(32t2+ 32t- 1)2 
Z = W (1) 166216?3 1728 + t t~~~~(1?+1) 1(1 +1) 

To prove strong uniformity, factor 

w(t) - w(s) 16( 
- s)(1 + I ) sf+ ) 

(1(1?+ l)s(s? 1) 
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where, in the new variables u = t(t + 1) and v = s(s + 1), f = 4096vu2 + 768uv + 4096uv2 - 1, 

-4096u2 - 768u + 128(16u + 1))4u + u 
f = 0 forv= 8192u 

t g 1k2 = k2 4v + 1 = (2s+ 1)2 = (k2 +6k + 1)2 
- k2 = (- k2)2' = 16k( + k)2 

With k = C2, t - C4/(l-4) and s = (- 1)4/(8C(1 + p2)) (showing genus zero). 

TABLE IV. Cases where the modular equation is only weakly 
uniform 

Branching pattern: w Z3, Z W3, Z 
( 

W, w Z (w2+w+1=0). 

(D33: Z = j3 (T), W = j3 (3T), j3 (3 ) j3 3 

j3 ( 3 )'j3 
T 

+/> )-3 (3 
T + 

-3 

The corresponding modular equation is 

3___ 3__t_____3 ___ r3v' (t3 - 3v" t2 - 9t - ) 
z(t) = 3v(t+v)6 = 108 + 3 -t3(-t2+ t+ / 

t3(t2 + tV'Jt + 1) t3(t2 + Jt + 1) 

(1 (t) 33(3t+ 1)6 3 + 31(9v3t3+9t2+3/3- 1)2 
Z ) w(t) = = 108 + 

t t(t2 + -t + 1) t(t2 + 3t +1) 

To check for weak uniformity of the equation, factor 

( t ) (s) 27(t - S)(t2 + 3t + 3 + st + 3s + s2)f 

V-3- V-3- S(S2?+3s?+3)t(t2 +3t +3) 

f = [(s + 1)3 - 1][(t + 1)3 - 1] - 1 (genus one). 

Branching pattern: w Z4, z W4, W -Z. 

(D34. Z = j3(r), ?1W = j3(4T) j3 (-) 
T 

j3 13 4 )4 ( ) 

The corresponding modular equation is 

z 4(t+ 2)6 4(t2 +t+ 1)(t2 - 8t- 8)2 
Z (t) = 4(t + 1) = 108 + t4(t?1) 

4_2t___1_ 4(t2 + t + 1)(8t2 + 8t - 1)2 
Z w (t_ = 

(t ) 108 + tt1 
= (t - t(t +1) tt+1 

To check for weak uniformity of the equation, factor 

w(t)-w (s) - t(t+(1)s( + 1) + 

f = 64vu2 + 48uv + 64uv2-1 with u = t(t + 1), v = s(s + 1); 

-64u2 - 48u + 16(4u+1) + u+u 
f = 0 for v = 128u 

This displays a subfield of genus one ( u2 + u = t(t + 1)(t2 + t + 1)). 
Branching pattern: w Z4, Z 4, w -z2, z -w2. 

D24: z = 12(T) w = j2(4T), j2 () 
T 

J2 ( + , j2h( 22) 

j2 V2 T ) 1 j2 2VT + I 

22 V20< ) J 2t < 
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The corresponding modular equation is 

z 8(t2 + 4V2"t + 4)4 

( t4(1 + t /2)(t + /2)2 

- 256 + 8(t4 - 8Vt3 - 36t2 - 32V2t - 16)2 

t4(1 + t V2)(t + /2)2 

( 1 (t) 8(4t2 + 4vt + 1)4 

t t(t + V'2)(1 + t )2 

- 256 + 8(16t4 + 32V'2t3 + 36t2 + 8V'2t - 1)2 
t (t + V)(2 + t V2) 2 

To check for weak uniformity of the equation, factor 

w (j) - w s 16 (t - s)(t + ) + I 
(t2 + 2t + 12 + 2s + I )f 

f = 16U2V2-16U2V-16V2U + 16uv-1, 

with u = t(t+ 1), v = s(s+ 1); 

f = 0 for v = 2(u2 -u) + (2u-I) u2-u 
4(U2 - U) 

This displays a subfield of genus one ( u2 - u = t(t + I)(t2 + t - 1) ). 

TABLE V. Derivation of the modular functions j(r) and j2(r) 
from two strongly uniform modular equations expressing the 
branching pattern w - z5 z wS 

'15 z = j(T) W = j(5T) j(_ ) (T 1) j(r 2) 

The modular equation (with z(1/t) = w(t) as usual) belongs to the family 

5v5(t2 + lO/g2t + 25g4)3g3 

1728g 5 + (5V5t2 + 22tg2 + 5V5g4)(t2 + 20V'5tg2 - 125g4)2g3 

t5 

553(1 + lOv5g2t + 25g4t2)3g3 

t 

1 728g5 + (55 + 22tg2 + 5Vt2g4)(125g4t2 520vg2t - 1)2g3 

For the power series expansion, set t = 1/(5V3Tg3) (T -- 0), 

z = (1+25Og5T + 3125gl?T2)3/T 

= 1/T + 750g5 + 196875g'0T + 20312500g'5T2 

+ 615234375g20T3 + 732421875Og25T4 + 30517578125g3?T5 

= 1/q+co+clq+C2q2 +c3q3 + , 

w = (1 + lOgT + 5g2T2)3/T5 

= 1/T5 + 30g/T4 + 315g2/T3 + 1300g3/T2 + 1575g4/T 

+ 750g5 + 125g6 T 

= 1/q5 +co +clq5 +c2q? +c3q 155 + 

Comparing power series, we find 

co = 750g5 - 6g, cl = 196875g10 + 9g2, 

C2 = 20312500g'5 + 1181250g"I + lOg3, 

C3 = 615234375g20 + 243750000g16 + 5315625g12 - 30g4. 
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For g = 1 we have j(T). 

'D25 Z = j2(T), W = j2(5Z), 12 , 2(- J ) (j2 

7 (t + 5g2)4(5t2 + 6g2t + 5g4)g3 
t5 

256g 5 + 5g3(t3 - 15g2t2 - 25g4t- 25g6)2 
t5 

(1 + 5g2t)4(5g4t2 + 6g2t + 5)g3 
w = ~~~~~~~~t 

= 256g5 + 5g3(25g6t3 + 25g4t2 + 15g2t - 1)2 

For the power series expansion, set t = 1/(5g3T) (T -O 0) 

z = (1 + 25g5T)4(1 + 6g5T + 25g lt2)/T 

= 1/T + 106g5 + 4375glOT + 87500g'5T2 

+ 859375 g20T3 + 39O625Og25T4 + 9765625 g30T5 

= l/q+co+clq+c2q2 + c3q + *.* * . 

w = (1 + gT)4(1 + 6gT + 25g2 T2)/T5 

= 1/T5 + lOg/T4 + 55g2/T3 + 140 g3/T2 

+ 175g4/T + 106g5 + 25g6 T 
= l/q5 +co + clq 5+ c2ql? + c3q + 

Comparing the power series, we find 

co = 106g 5- 2g, cl = 4375glo - 3g2, 

C2 = 87500g 15 + 8750g" + 6g3, 

C3 = 859375g20 + 350000g'6 + 30625g12 + 2g4. 

For g = 1 we have j2(T) . 

BIBLIOGRAPHY 

1. D. Alexander, C. Cummins, J. McKay, and C. Simons, Completely replicable functions (to 
appear). 

2. H. Cohn, Iterated ring class fields and the icosahedron, Math. Ann. 255 (1981), 107-122. 
3. , Introduction to the construction of class fields, Cambridge Univ. Press, London and 

New York, 1985. 

4. J. H. Conway and S. P. Norton, Monstrous moonshine, Bull. London Math. Soc. 11 (1979), 
308-339. 

5. R. Fricke, Lehrbuch der Algebra III (Algebraische Zahlen), Vieweg, Braunschweig, 1928. 
6. F. Klein, Vorlesungen iuber das Ikosaeder, Teubner, Leipzig, 1884. 
7. D. H. Lehmer, Properties of coefficients of the modular invariant J(z), Amer. J. Math. 64 

(1942), 488-502. 

8. K. Mahler, On a class of non-linear functional equations connected with modular equations, 
J. Austral. Math. Soc. Ser. A 22 (1976), 65-118. 

9. C. Pohl, G. Rosenberger, and A. Schoofs, Arithmetische Eigenschaften von Eisenstein-Reihen 
zu den Hecke-Gruppen G(V'2) und G(V'3), Abh. Math. Sem. Univ. Hamburg 54 (1984), 
49-68. 

10. H. Weber, Elliptische Funktionen und algebraische Zahlen, Vieweg, Braunschweig, 1891. 

DEPARTMENT OF MATHEMATICS, CITY COLLEGE (CUNY), NEW YORK, NEW YORK 10031 
E-mail address: hihcc@cunyvm.bitnet 


	Cit r251_c259: 
	Cit r254_c262: 


